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Abstract. Tremendous developments have seen in science and technology for heterogeneous materials from last few decades. In the 

context of composites, the microstructure typically consists of particulate or fibrous inclusions and pores, known as heterogeneities. 

The aim of this work is to do micromechanical analysis of heterogeneous material, its modeling and to determine the effect of RVE 

size on maximum volume fraction and homogenized coefficient in steel fiber reinforced concrete. 
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1. INTRODUCTION 

Heterogeneous materials have physical properties that fluctuate all through their microstructures [Temizer, (2012)]. The materials 

termed as heterogeneous materials are alloy systems containing precipitates and pores, polymers, ceramic or metal-matrix composite 

materials containing distributed fibers, whiskers or particulates in the matrix. A number of studies are reported on the study of these 

heterogeneous materials [Ghosh, et al (1995)]. The basic objective of the theories proposed for the heterogeneous materials is the 

prediction of effective or average macrosopic properties incorporating the effect of relative composition and/or distribution of the 

individual particle or phases and its properties.                         

Various computational methods utilize the homogenization hypothesis for reflecting the effect of material microstructure on 

macroscopic behavior. These methods are predominantly based on asymptotic analyses with assumptions on periodic repetition of 

microstructures. The distribution of shapes, sizes and the spatial coordinates of the secondary phase have a profound influence on the 

mechanical behavior of the overall structure and should be considered in their analysis  [Ghosh and Mukhopadhyay (1993)]. 

Homogenization is the determination of the properties of the homogeneous material that approximates the behavior of the original 

heterogeneous material. These properties can also be termed as effective, apparent or macroscopic properties. To predict the 

macroscale properties of the heterogeneous materials, one of the most widely used methods is the concept of ‘Representative Volume 

Element (RVE) method [Zhang et al. (2008)]. A finite sized sample from the heterogeneous materials which characterizes its 

macroscopic behavior is called representative volume element (RVE), and the homogenization method rely on the identification of a 

representative volume element. A general requirement for a sample to qualify as an RVE is that the dimension of the heterogeneities 

(d) be smaller than the dimension of the RVE (L): d << L. The sample would be expected to resemble a homogeneous material 

macroscopically if 0d L . A microscopically heterogeneous macrostructure requires that the RVE size (L) be much smaller than the 

dimension of the macrostructure (D) for the applicability of homogenization theory i.e. L << D. After identification of RVE, the RVE 

is subjected to certain boundary conditions for the specified loadings. 

A number of models are proposed in literature which is found to be suitable for such representation of the heterogeneities   in the 

materials. Out of this model, there are few engineering based methods which show a good agreement with other empirical methods 

and the experimental results. The homogenization theory is one of the most prominent mathematical models representing the averaged 

global properties of the heterogeneous materials. Hashin and Shtrikman (1963) derive the bounds for the effective elastic moduli of 

multiphase materials, with the aid of some variational principles in elasticity. A self-consistent mechanics of composite materials was 

developed by Hill (1965). Over the past few years various models are developed for the analysis of heterogeneous materials. One of 

the model is micromechanics based model which is found to be suitable for the prediction of homogenized elastic mechanical/thermal 

properties of the materials. This work is preliminary work for the prediction of elastic material properties using quadrilateral finite 

elements. 
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2. GOVERNING EQUATION 

Some important formulation used for the modeling the finite element mesh are presented. Linear momentum balance equation.                                     

     ( )div b u                                                                                                     (2.1)                                                   

  Subjected to boundary conditions:    u u  On ,uR  t n = t  on 
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If   is differentiable than, this equation is converted into the weak form as:
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Using the iso-parametric linear quadrilateral elements having four nodes with shape functions given as:  
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the Eq. (2.3) is converted into the following form of the finite element equation 

  

    K u f

                                                                                                                                                                       (2.5) 

                                      

 

3. RESULTS AND DISCUSSION 

The results of the analysis are obtained for steel fiber reinforced composite material. The young’s modulus and Poisson ratio values 

for both steel and concrete are taken from literature Ren and Li (2013).  Effect of RVE size on maximum volume fraction and 

homogenized coefficient is tested. Increasingly larger sample sizes may be generated randomly by packing more and more particles 

in the sample volume. The edge length of the RVE is increased to accommodate more and more particles in the sample volume as 

depicted in Figure 3.1. The RVE size increases and accommodates more and more number of particles. In this example the size of the 

RVE is increased and accommodates 4, 6, 64, 256 and 350 numbers of particles. The results obtained will show the saturation behaviour 

in the homogenized coefficients as the RVE size increases. The microstructures obtained by increasing the RVE size are represented 

in Figure 3.1. The theoretical maximum volume fraction that can be reached by the packing configuration is when all the particles lie 

within the box. This theoretical maximum volume fraction is set to 0.4 and is used to compute the size of the packing volume. Further 

in this case the particles are not allowed to lie across the boundaries. The results are tabulated in table 3.1. 

 
Figure 3.1. Successive enlargement of the RVE (a) 4 particles, (b) 16 particles, (c) 64 

particles, (d) 256 particles and (e) 350 particles. 
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Table 3.1 Effect of RVE size on maximum volume fraction and homogenized coefficient when particles are 

not allowed to lie across the boundaries 

 

RVE size in terms of no. of 

particles accommodated 
Numerical Volume fraction Homogenized coefficient (GPa) 

4 0.4055 48.298 

16 0.4024 46.212 

64 0.4010 46.082 

256 0.3999 45.588 

350 0.3999 45.527 

 
The resulting microstructures are shown in Figure 3.2. This concept of increasing sample size or RVE size is another fundamental 

concept in micromechanics because the responses of the samples typically exhibit a convergence behaviour or saturation behaviour 

with increasing sample sizes. Now if the particles are allowed to lie across the boundaries, the actual volume fraction is always less 

than theoretical maximum volume fraction. However as the sample size increases the effect of these cross-boundary particles diminish, 

and one approaches to theoretical maximum. The results obtained with these configurations are tabulated in Table 3.2. 

 

 
Figure 3.2 Successive enlargement of the RVE with particles allowed to lie across the boundaries (a) 4 particles, (b) 16 particles, (c) 

64 particles, (d) 256 particles, (e) 500 particles and (f) 700 particles. 

 

Table 3.2. Effect of RVE size on maximum volume fraction and Homogenized coefficient when particles are 

allowed across the boundaries 

RVE size in terms of no. of 

particles accommodated 
Numerical Volume fraction Homogenized coefficient (GPa) 

4 0.2839 39.315 

16 0.3535 42.973 

64 0.3629 43.144 

256 0.3846 44.354 

500 0.389 44.491 

700 0.3918 44.702 
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It is observed that as the RVE size increases the volume fraction converges to 0.40 i.e., to the theoretical volume fraction. This is the 

effect of increasing the sample size, where the convergence behaviour is observed for increasing the sample size. This suggests that 

the properties associated with the microstructures should be extracted from samples that are very large with respect to the dimension 

of the underlying micro-structural constituents. It means there is a saturation behaviour in the properties of the microstructure as we 

keep on increasing the RVE size. 

 
4. CONCLUSION 

In the present work, micromechanical model is used for the analysis of heterogeneous materials using finite element method. The 

analytical and computational effort required for the treatment of problems involving heterogeneous materials is greatly reduced by this 

homogenization method.  The results are in close agreement with the respective experimental/analytical observations available in the 

literature. The analysis is done for steel fiber reinforced concrete composite. The effect of RVE size on maximum volume fraction and 

homogenized coefficient in steel fibre reinforced concrete is investigated. 
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